AI for climate and weather predictions
- Type: Praktikum (P)
- Chair: ITI Nowack
- Semester: SS 2025
-
Time:
Thu 2025-04-24
11:30 - 13:00, weekly
50.34 Raum -109
50.34 INFORMATIK, Kollegiengebäude am Fasanengarten (1. Untergeschoss)
Thu 2025-05-08
11:30 - 13:00, weekly
50.34 Raum -109
50.34 INFORMATIK, Kollegiengebäude am Fasanengarten (1. Untergeschoss)
Thu 2025-05-15
11:30 - 13:00, weekly
50.34 Raum -109
50.34 INFORMATIK, Kollegiengebäude am Fasanengarten (1. Untergeschoss)
Thu 2025-05-22
11:30 - 13:00, weekly
50.34 Raum -109
50.34 INFORMATIK, Kollegiengebäude am Fasanengarten (1. Untergeschoss)
Thu 2025-06-05
11:30 - 13:00, weekly
50.34 Raum -109
50.34 INFORMATIK, Kollegiengebäude am Fasanengarten (1. Untergeschoss)
Thu 2025-06-26
11:30 - 13:00, weekly
50.34 Raum -109
50.34 INFORMATIK, Kollegiengebäude am Fasanengarten (1. Untergeschoss)
Thu 2025-07-03
11:30 - 13:00, weekly
50.34 Raum -109
50.34 INFORMATIK, Kollegiengebäude am Fasanengarten (1. Untergeschoss)
Thu 2025-07-10
11:30 - 13:00, weekly
50.34 Raum -109
50.34 INFORMATIK, Kollegiengebäude am Fasanengarten (1. Untergeschoss)
Thu 2025-07-17
11:30 - 13:00, weekly
50.34 Raum -109
50.34 INFORMATIK, Kollegiengebäude am Fasanengarten (1. Untergeschoss)
Thu 2025-07-24
11:30 - 13:00, weekly
50.34 Raum -109
50.34 INFORMATIK, Kollegiengebäude am Fasanengarten (1. Untergeschoss)
Thu 2025-07-31
11:30 - 13:00, weekly
50.34 Raum -109
50.34 INFORMATIK, Kollegiengebäude am Fasanengarten (1. Untergeschoss)
- Lecturer: TT-Prof. Dr. Peer Nowack
- SWS: 3
- Lv-No.: 2400082
- Information: On-Site
Content | Content: Students will learn how to work with state-of-the-art AI models for climate science and weather forecasting. For example, typical AI models will include recent releases of · Foundation models for climate science and weather forecasting. · Generative AI models for tasks such as ensemble generation of weather forecasts and of climate change simulations for uncertainty quantification. · Transformer and graph neural network models for weather forecasting. · Climate model emulators. Each student will be able to select from a variety of topics to explore in their practical experiments. These could include, but are not limited to: · The representation of physical concepts in data-driven AI models (e.g., does the model indirectly learn to “understand physics”?). · Detecting and understanding failure modes of AI models. · Forecast accuracy and uncertainty quantification for AI-generated ensembles of simulations. · Effective solutions to post-processing AI results and/or to modifying AI model architectures. · Assessing if certain AI architectures perform significantly better for specific tasks. Workload: In-person introductory session, individual and group meetings, final presentation sessions: 30h Practical tasks – getting started, implementation, experiments, analysis: 100h Write up results in the style of a scientific paper and preparation of final presentation: 50h
|
Language of instruction | English |