Data set synthetization to improve deep learning

A common drawback of deep learning algorithms is their need for large, annotated datasets for training and evaluation. In case of 2D images, the manual annotation is often just seen as a burdensome and time-consuming task. However, the annotation of higher dimensional data such as 3D or 3D+t images introduce new difficulties which. The visualization and annotation are mainly limited to 2D views, as the rendering of large 3D structures with many instances is not very useful. The additional dimensions thus lead to a severe increase in the amount of data to be annotated. Furthermore, the spatial recognition of objects is more difficult and the generation of consistent object outlines between layers is not feasible. The manual annotation of higher dimensional data is thus a nearly impossible task.

The main goal of the project is to develop and improve methods for the generation of synthetic image data, where labels are known by design. Important aspects of this research are the inclusion of rare object states and structures and the consideration of biophysical forces. In addition, methods for evaluating the quality and physical plausibility of the synthetic data are developed.

 


Completed Project

Publications


2025
Improving 3D deep learning segmentation with biophysically motivated cell synthesis
Bruch, R.; Vitacolonna, M.; Nürnberg, E.; Sauer, S.; Rudolf, R.; Reischl, M.
2025. Communications Biology, 8 (1), Art.-Nr.: 43. doi:10.1038/s42003-025-07469-2
2024
Improving 3D deep learning segmentation with biophysically motivated cell synthesis
Bruch, R.; Vitacolonna, M.; Nürnberg, E.; Sauer, S.; Rudolf, R.; Reischl, M.
2024. arxiv. doi:10.48550/arXiv.2408.16471
From in vitro to in silico: a pipeline for generating virtual tissue simulations from real image data
Nürnberg, E.; Vitacolonna, M.; Bruch, R.; Reischl, M.; Rudolf, R.; Sauer, S.
2024. Frontiers in Molecular Biosciences, 11. doi:10.3389/fmolb.2024.1467366
Quantitative Analysis of Whole-Mount Fluorescence-Stained Tumor Spheroids in Phenotypic Drug Screens
Nuernberg, E.; Bruch, R.; Hafner, M.; Rudolf, R.; Vitacolonna, M.
2024. 3D Cell Culture. Ed.: Z. Sumbalova Koledova, 311–334, Springer US. doi:10.1007/978-1-0716-3674-9_20
A multiparametric analysis including single-cell and subcellular feature assessment reveals differential behavior of spheroid cultures on distinct ultra-low attachment plate types
Vitacolonna, M.; Bruch, R.; Agaçi, A.; Nürnberg, E.; Cesetti, T.; Keller, F.; Padovani, F.; Sauer, S.; Schmoller, K. M.; Reischl, M.; Hafner, M.; Rudolf, R.
2024. Frontiers in Bioengineering and Biotechnology, 12. doi:10.3389/fbioe.2024.1422235
2023
Unsupervised GAN epoch selection for biomedical data synthesis
Böhland, M.; Bruch, R.; Löffler, K.; Reischl, M.
2023. Current Directions in Biomedical Engineering, 9 (1), 467–470. doi:10.1515/cdbme-2023-1117
Mask R-CNN Outperforms U-Net in Instance Segmentation for Overlapping Cells
Rettenberger, L.; Münke, F. R.; Bruch, R.; Reischl, M.
2023. Current Directions in Biomedical Engineering, 9 (1), 335–338. doi:10.1515/cdbme-2023-1084
Improving generative adversarial networks for patch-based unpaired image-to-image translation
Böhland, M.; Bruch, R.; Bäuerle, S.; Rettenberger, L.; Reischl, M.
2023. IEEE Access, 11, 127895–127906. doi:10.1109/ACCESS.2023.3331819
Synthesis of large scale 3D microscopic images of 3D cell cultures for training and benchmarking
Bruch, R.; Keller, F.; Böhland, M.; Vitacolonna, M.; Klinger, L.; Rudolf, R.; Reischl, M.
2023. PLOS ONE, 18 (3), Article no: e0283828. doi:10.1371/journal.pone.0283828
2022
Prediction of Fluorescent Ki67 Staining in 3D Tumor Spheroids
Bruch, R.; Vitacolonna, M.; Rudolf, R.; Reischl, M.
2022. Current Directions in Biomedical Engineering, 8 (2), 305–308. doi:10.1515/cdbme-2022-1078
2021
epiTracker: A Framework for Highly Reliable Particle Tracking for the Quantitative Analysis of Fish Movements in Tanks
Bruch, R.; Scheikl, P. M.; Mikut, R.; Loosli, F.; Reischl, M.
2021. SLAS technology, 26 (4), 367–376. doi:10.1177/2472630320977454
2020
Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei
Bruch, R.; Rudolf, R.; Mikut, R.; Reischl, M.
2020. Current directions in biomedical engineering, 6 (3), Art.Nr. 20203103. doi:10.1515/cdbme-2020-3103
Evaluation of Semi-Supervised Learning Using Sparse Labeling to Segmet Cell Nuclei
Bruch, R.; Rudolf, R.; Mikut, R.; Reischl, M.
2020. 54th Annual Conference of the German Society for Biomedical Engineering (DGBMT 2020), Online, September 29–October 1, 2020